Efficient Training Procedures for Multi-Spectral Demosaicing
نویسندگان
چکیده
منابع مشابه
On Efficient Procedures for Multi-issue Negotiation
This paper studies bilateral, multi-issue negotiation between self-interested agents with deadlines. There are a number of procedures for negotiating the issues and each of these gives a different outcome. Thus, a key problem is to decide which one to use. Given this, we study the three main alternatives: the package deal, the simultaneous procedure, and the sequential procedure. First, we dete...
متن کاملEnhancement of Color Images By Efficient Demosaicing
We propose an efficient method for reconstructing a full-color image from its partially sampled version. The suggested algorithm is non-iterative and is based on the properties of the human visual system. While most state-of-the-art algorithms invest a great deal of computational effort in the enhancement of the reconstructed image to overcome the color artifacts, we focus on eliminating the ma...
متن کاملA Co-training Approach for Multi-view Spectral Clustering
We propose a spectral clustering algorithm for the multi-view setting where we have access to multiple views of the data, each of which can be independently used for clustering. Our spectral clustering algorithm has a flavor of co-training, which is already a widely used idea in semi-supervised learning. We work on the assumption that the true underlying clustering would assign a point to the s...
متن کاملGuided Co-training for Large-Scale Multi-View Spectral Clustering
In many real-world applications, we have access to multiple views of the data, each of which characterizes the data from a distinct aspect. Several previous algorithms have demonstrated that one can achieve better clustering accuracy by integrating information from all views appropriately than using only an individual view. Owing to the effectiveness of spectral clustering, many multi-view clus...
متن کاملRobust and efficient multi-way spectral clustering
We present a new algorithm for spectral clustering based on a column-pivoted QR factorization that may be directly used for cluster assignment or to provide an initial guess for k-means. Our algorithm is simple to implement, direct, and requires no initial guess. Furthermore, it scales linearly in the number of nodes of the graph and a randomized variant provides significant computational gains...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20102850